173 research outputs found

    Automatically Leveraging MapReduce Frameworks for Data-Intensive Applications

    Full text link
    MapReduce is a popular programming paradigm for developing large-scale, data-intensive computation. Many frameworks that implement this paradigm have recently been developed. To leverage these frameworks, however, developers must become familiar with their APIs and rewrite existing code. Casper is a new tool that automatically translates sequential Java programs into the MapReduce paradigm. Casper identifies potential code fragments to rewrite and translates them in two steps: (1) Casper uses program synthesis to search for a program summary (i.e., a functional specification) of each code fragment. The summary is expressed using a high-level intermediate language resembling the MapReduce paradigm and verified to be semantically equivalent to the original using a theorem prover. (2) Casper generates executable code from the summary, using either the Hadoop, Spark, or Flink API. We evaluated Casper by automatically converting real-world, sequential Java benchmarks to MapReduce. The resulting benchmarks perform up to 48.2x faster compared to the original.Comment: 12 pages, additional 4 pages of references and appendi

    Massively Parallel Sort-Merge Joins in Main Memory Multi-Core Database Systems

    Full text link
    Two emerging hardware trends will dominate the database system technology in the near future: increasing main memory capacities of several TB per server and massively parallel multi-core processing. Many algorithmic and control techniques in current database technology were devised for disk-based systems where I/O dominated the performance. In this work we take a new look at the well-known sort-merge join which, so far, has not been in the focus of research in scalable massively parallel multi-core data processing as it was deemed inferior to hash joins. We devise a suite of new massively parallel sort-merge (MPSM) join algorithms that are based on partial partition-based sorting. Contrary to classical sort-merge joins, our MPSM algorithms do not rely on a hard to parallelize final merge step to create one complete sort order. Rather they work on the independently created runs in parallel. This way our MPSM algorithms are NUMA-affine as all the sorting is carried out on local memory partitions. An extensive experimental evaluation on a modern 32-core machine with one TB of main memory proves the competitive performance of MPSM on large main memory databases with billions of objects. It scales (almost) linearly in the number of employed cores and clearly outperforms competing hash join proposals - in particular it outperforms the "cutting-edge" Vectorwise parallel query engine by a factor of four.Comment: VLDB201

    Learned Cardinalities: Estimating Correlated Joins with Deep Learning

    Get PDF
    We describe a new deep learning approach to cardinality estimation. MSCN is a multi-set convolutional network, tailored to representing relational query plans, that employs set semantics to capture query features and true cardinalities. MSCN builds on sampling-based estimation, addressing its weaknesses when no sampled tuples qualify a predicate, and in capturing join-crossing correlations. Our evaluation of MSCN using a real-world dataset shows that deep learning significantly enhances the quality of cardinality estimation, which is the core problem in query optimization.Comment: CIDR 2019. https://github.com/andreaskipf/learnedcardinalitie

    RadixSpline: A Single-Pass Learned Index

    Full text link
    Recent research has shown that learned models can outperform state-of-the-art index structures in size and lookup performance. While this is a very promising result, existing learned structures are often cumbersome to implement and are slow to build. In fact, most approaches that we are aware of require multiple training passes over the data. We introduce RadixSpline (RS), a learned index that can be built in a single pass over the data and is competitive with state-of-the-art learned index models, like RMI, in size and lookup performance. We evaluate RS using the SOSD benchmark and show that it achieves competitive results on all datasets, despite the fact that it only has two parameters.Comment: Third International Workshop on Exploiting Artificial Intelligence Techniques for Data Management (aiDM 2020

    Towards Context-Aware Adaptable Web Services.

    Get PDF
    ABSTRACT In this paper, we present a context framework that facilitates the development and deployment of context-aware adaptable Web services. Web services are provided with context information about clients that may be utilized to provide a personalized behavior. Context is extensible with new types of information at any time without any changes to the underlying infrastructure. Context processing is done by Web services, context plugins, or context services. Context plugins and context services pre-and post-process Web service messages based on the available context information. Both are essential for automatic context processing and automatic adaption of Web services to new context types without the necessity to adjust the Web services themselves. We implemented the context framework within the ServiceGlobe system, our open and distributed Web service platform

    Estimating Cardinalities with Deep Sketches

    Full text link
    We introduce Deep Sketches, which are compact models of databases that allow us to estimate the result sizes of SQL queries. Deep Sketches are powered by a new deep learning approach to cardinality estimation that can capture correlations between columns, even across tables. Our demonstration allows users to define such sketches on the TPC-H and IMDb datasets, monitor the training process, and run ad-hoc queries against trained sketches. We also estimate query cardinalities with HyPer and PostgreSQL to visualize the gains over traditional cardinality estimators.Comment: To appear in SIGMOD'1
    • …
    corecore